CHEM 200/202

Professor Theresa Carlson
Office: GMCS-2I3B
All emails are to be sent to: chem200@sdsu.edu

My office hours will be held on zoom via MSLC on Mondays \& Wednesday from 8:00 am to I0:00 am or by appointment

$$
\begin{gathered}
\text { IMPORTANT } \\
\text { ANNOUNCEMENTS }
\end{gathered}
$$

1. Email chem200@sdsu.edu ONLY unless its regarding lab or discussion which then you need to email your respective TA.
2. Follow the directions in adding OWL that Theresa provided you in Module $1.0>$ Adding OWL (READ). She made a video and has a pdf file with directions.

3. There is no course key for OWL.

4. Read the announcements and emails that Theresa, Megan, or your TAs sends out.
5. Again read the syllabus. A lot of questions are being asked that are in the syllabus. For example, emailing when the lab will be and what will take place can be answered by the syllabus. In the syllabus there is a lab schedule, read, use it, and print it out.
6. And for good measure read the announcements before sending out emails. The majority (98%) of questions can be answered by: the syllabus, videos Theresa has made, and in the announcements.

UPCOMING IMPORTANT DATES

-Pre-Assignment: Solubility Experiment Sunday, February 12th at 11:59 pm
-Achieve Extra Credit: Laboratory Skills Sunday, February 12th at 11:59 pm
-Solubility Experiment Prelab due Sunday, February 12th at 11:59 pm

- Volumetric Lab Report due Sunday, February 12th at 11:59 pm
-Chapter 1-4 Chapter Problem Sets in OWL Lecture due Thursday, February 9th at 11:59 pm (Start Now)
-Chapter 1-4 Chapter Assessments in OWL Lecture is Thursday, February 9th at 11:59 pm (Start Now); 2 chances, no time limit
-Exam 1 starts at 3 pm Friday, February 10th and will close on Saturday, February 11th at 3pm in OWL Lecture; Chapters 1-4. You have 24hrs. Only 2 hrs once you start; be sure to give yourself a full 2 hr time slot.

SUPPLEMENTAL INSTRUCTION (SI)

- Study sessions lead by former CHEM 200/202 students that excelled in the previous semesters class.
- Occur $15+$ times a week.
- Free to access, no reporting to faculty.

THE MATH AND SCIENCE LEARNING CENTER (MSLC)

Students are encouraged to make use of The Mathematics and Statistics Learning Center (MSLC) for free STEM tutoring, located in the Love Library, Room 328. For a full list of courses tutored, please visit the MSLC website: https://mlc.sdsu.edu/.

The MSLC is supported by your student success fee. We strongly encourage you to use this wonderful, free resource. Some students believe that they shouldn't need to ask for help, but research has shown that the average grade for students who attend the MLC is almost one full grade higher than those who don't seek such support.

LECTURE OBJECTIVES

- Chapter 4.2-4.4
- Determine the oxidation states of elements in compounds.
- Identify the oxidizing and reducing agents in redox reactions.
- Perform stoichiometric calculations involving mass, moles, and solution molarity.
- Calculate theoretical, and percent yields for chemical reactions.

REDOX REACTIONS

Proton exchange membrane fuel cell

REDOX REACTION IN COMPOUND FORMATION

Electrons are shifted in the formation of covalent compounds.

OXIDATION NUMBER RULES

General Rules

I. For an atom in its elemental form (e.g. $\left.\mathrm{Na}, \mathrm{O}_{2}, \mathrm{Cl}_{2}, \ldots.\right)$ the $\mathrm{O} . \mathrm{N} .=0$. 2. For a monoatomic ion (e.g. $\mathrm{Br}^{2}, \mathrm{Cu}^{2+}, \ldots$) the $\mathrm{O} . \mathrm{N} .=$ ion charge.
3. The sum of the O.N. values for atoms in a compound equals zero. For polyatomic ions the sum equals the charge of the ion.

Specific Rules

I. For Group I(A) I - O.N. is + I in all compounds
2. For Group 2(A)2 - O.N. is +2 in all compounds
3. For hydrogen
4. For fluorine
5. For oxygen

- O.N. is + I when bound to nonmetals
- O.N. is - I when bound to metals \& boron
- O.N. is - I when in peroxides (e.g. $\mathrm{H}_{2} \mathrm{O}_{2}$)
- O.N. is -2 for all others (except with fluorine)

6. For Group 7(A)I7 - O.N. is - I when with metals, nonmetals (except O) \& for other halogens lower in group

OXIDATION NUMBERS

The main group elements can have different oxidation numbers depending on the molecule they are part of.

Compound	O.N. of nitrogen
NH_{3}	-3
$\mathrm{~N}_{2} \mathrm{H}_{4}$	-2
$\mathrm{NH}_{2} \mathrm{OH}$	-1
$\mathrm{~N}_{2}$	0
$\mathrm{~N}_{2} \mathrm{O}$	+1
NO^{2}	+2
NO_{2}	+3
NO_{2}	+4
$\mathrm{NO}_{3}-$	+5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

		1A	2 A	3A	4A	5A	6A	7A
		+1	+2	+3	+4/-4	+5 -3	+6 -2	+7-1
	2	Li	Be	B	C	N	0	F
	3	Na	Mg	AI	Si	P	S	CI
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	4	K	Ca	Ga	Ge	As	Se	Br
	5	Rb	Sr	In	Sn	Sb	Te	I
	6	Cs	Ba	TI	Pb	Bi	Po	At
	7	Fr	Ra	113	114	115	116	

ASSIGNING OXIDATION NUMBERS

(a) $\mathrm{H}_{2} \mathrm{~S}$
(b) $\mathrm{SO}_{3}{ }^{2-}$
(c) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(d) KNO_{3}
(e) AlH_{3}
(f) $\mathrm{NH}_{4}{ }^{+}$
(g) $\mathrm{H}_{2} \mathrm{PO}_{4}$

REDOXTERMINOLOGY

$$
\begin{gathered}
2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})} \\
2 \mathrm{Mg} \rightarrow 2 \mathrm{Mg}^{2+}+4 \mathrm{e}^{-} \\
\mathrm{O}_{\mathrm{N} .:} \mathrm{O}+2
\end{gathered} \mathrm{O}_{2}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-}
$$

- Mg loses electrons
- Mg is oxidized
- $M g$ is the reducing agent
- The oxidation number of Mg is increased
- O gains electrons
- O is reduced
- O is the oxidizing agent
- The oxidation number of O is decreased

OXIDATION REDUCTION OIL RIG

Oxidation
is
Ioss of electrons

Reduction
is
gain of electrons

LEO GER

Lose
electrons is
oxidation

Gain
electrons is
reduction

QUESTION

Identify the oxidizing agent and reducing agent in the following reaction:

$$
\mathrm{Sn}_{(\mathrm{s})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Oxidizing agent	Reducing agent	Answer
H^{+}	Sn	A
H^{+}	Sn^{2+}	B
Sn	H^{+}	C
Sn	H_{2}	D
Sn^{2+}	H_{2}	E

$$
\mathrm{Zn}+\mathrm{NiO}_{2}+4 \mathrm{H}^{+} \longrightarrow \mathrm{Ni}^{2+}+\mathrm{Zn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}
$$

In the above redox reaction, use oxidation numbers to identify the element oxidized, the element reduced, the oxidizing agent and the reducing agent.
name of the element oxidized: Zinc
name of the element reduced: Nickel
formula of the oxidizing agent: NiO 2
formula of the reducing agent: Zn

TYPES OF REDOX REACTIONS

- The different types of redox reactions are classified by the components of the reaction and what happens to those components.
- There are four types of redox reactions which involve elements - combination, decomposition, displacement and combustion.
- In these reactions, elements may be reagents, products or transferred during the reaction.

COMBINATION REACTION

$$
\begin{aligned}
2 \mathrm{~K}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} & \rightarrow 2 \mathrm{KCl}_{(\mathrm{s})} \\
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} & \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
\end{aligned}
$$

© The McGraw-Hill Companies, Inc./Stephen Frisch Photographer

DECOMPOSITION REACTION

 $2 \mathrm{HgO}_{(\mathrm{s})} \Rightarrow 2 \mathrm{Hg}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})} \quad \Delta=$ heat $2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \xrightarrow{\text { electricity }} 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

DISPLACEMENT REACTION

An active metal displacing hydrogen from water

© The McGraw-Hill Companies, Inc./Stephen Frisch Photographer

DISPLACEMENT REACTIONS

Displacing one metal by another metal

$$
\begin{aligned}
\left.\mathrm{Cu}_{(s)}+2 \mathrm{AgNO}_{3(a)}\right) & \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(a)}+2 \mathrm{Ag}_{(s)} \\
\mathrm{Zn}_{(s)}+\mathrm{CuSO}_{4(a)} & \left.\rightarrow \mathrm{ZnSO}_{4(a)}\right)+\mathrm{Cu}_{(s)}
\end{aligned}
$$

[^0]
COMBUSTION REACTIONS

- Combustion reactions always involve oxygen.
-The reactions reduce oxygen and release energy, frequently as heat and light.

$$
\begin{gathered}
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})} \\
2 \mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}+13 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{CO}_{2(\mathrm{~g})}+10 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~g})}+6 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
\end{gathered}
$$

CALCULATING THE QUANTITIES OF REACTANT AND PRODUCTS

A balanced equation is essential for all calculations involving chemical change: if you know the number of moles of one substance, the balanced equation tells you the number of moles of the others.

From a balanced equation we can find the stoichiometrically equivalent molar ratios

$$
\text { Example: } \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \quad 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

I mol of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacts (stoichiometrically equivalent) with 5 mol of O_{2}
I mol of $\mathrm{C}_{3} \mathrm{H}_{8}$ produces (stoichiometrically equivalent) with 3 mol of CO_{2}
I mol of $\mathrm{C}_{3} \mathrm{H}_{8}$ produces (stoichiometrically equivalent) with 4 mol of $\mathrm{H}_{2} \mathrm{O}$
3 mol of CO_{2} is stoichiometrically equivalent to 4 mol of $\mathrm{H}_{2} \mathrm{O}$
5 mol of O_{2} is stoichiometrically equivalent to 3 mol of CO_{2}

SOLVING STOICHOMETRY PROBLEMS:

I. Write the balanced equation
2. When necessary, convert the mass (or number of entities) of one substance to amount (mol) using its molar mass (or Avogadro's number)
3. Use the mole ratio to calculate the unknown amount (mol) of the other substance.
4. When necessary, convert the amount (mol) of that substance to the desired mass (or number of entities) using its molar mass (or Avogadro's number)

REACTION STOICHIOMETRY

We can now use the balanced chemical equation to derive stoichiometric factors relating to amounts of reactants and products.

REACTIONYIELDS

- The reaction yield is a measure of the completeness of a reaction; quantifying how much of the possible product was formed.
- Determining the theoretical yield for a reaction requires a balanced chemical reaction, and the identification of the limiting reagent.
- The limiting reagent is the reagent that will be entirely consumed first, stoping the reaction (limiting the amount of product formed).

LIMITING REACTANT

Limiting Reactant is the reactant that is consumed when a reaction occurs and, therefore, the one that determines the maximum amount of product that can form.

Determining the limiting reactant:
I. Use the balance equation to see how much product is forms from the given amount of each reactant.
2. The limiting reactant is the one that yields the least amount of product and the excess reactant is the one that yields the more amount of product.

Sample Problem 3.19: In a preparation of $\mathrm{ClF}_{3}, 0.750 \mathrm{~mol}$ of
Cl_{2} reacts with $3.00 \mathrm{~F}_{2}$. Find the limiting reactant.
I. Create a balanced equation

$$
\mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{ClF}_{3}(\mathrm{~g})
$$

2. For each reactant find the moles of the product ClF_{3}
$0.750 \mathrm{~mol} \mathrm{Cl}_{2} \times\left(2 \mathrm{~mol} \mathrm{ClF}_{3} / 1 \mathrm{~mol} \mathrm{Cl}_{2}\right)=1.50 \mathrm{~mol}$ of ClF_{3}
$3.00 \mathrm{~mol} \mathrm{~F}_{2} \times\left(2 \mathrm{~mol} \mathrm{ClF}_{3} / 3 \mathrm{~mol} \mathrm{~F}_{2}\right)=2.00 \mathrm{~mol}$ of ClF_{3}
Cl_{2} is the limiting reagent; while F_{2} is the excess reagent

LIMITING REAGENT

- The Haber-Bosch process produces ammonia from nitrogen and hydrogen gas (unbalanced reaction below).
- _ $\mathrm{N}_{2(g)}+$ _ $_{2(g)} \rightarrow$ _ $^{\mathrm{NH}_{3(g)}}$
- Hydrogen limiting reagent: How many grams of ammonia would be produced if 4.04 g of H_{2} and an infinite amount of N_{2} ? How much N_{2} is consumed?

THEORETICAL,ACTUAL,AND

PERCENTYIELDS

- Theoretical yield= the amount of product calculated from the molar ratio in the balanced equation
- Actual yield= the actual amount of product actually obtained in an experiment
- Percent yield= the actual yield expressed as a percentage of the theoretical yield

$$
\text { Percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100
$$

REACTIONYIELDS

- Not every reaction proceeds perfectly to produce 100% of the maximum product.
- Reactions that are imperfect have reaction yields of less than 100\%.
- Considering the reaction: _ $\mathrm{N}_{2(\mathrm{~g})}+{ }_{-} \mathrm{H}_{2(\mathrm{~g})} \rightarrow$ _ $\mathrm{NH}_{3(\mathrm{~g})}$
- The reaction was performed with 4.04 g of H_{2} and excess N_{2}. At the end of the reaction your yield is only 15.0%. What mass of NH_{3} is formed?
- If the reaction produced $7.24 \mathrm{~g} \mathrm{NH}_{3}$.What would the yield be?

LIMITING REAGENT

For the following reaction, $\mathbf{1 9 . 1}$ grams of sodium chloride are allowed to react with $\mathbf{5 8 . 8}$ grams of silver nitrate.
sodium chloride (aq) + silver nitrate (aq) \longrightarrow silver chloride (s) + sodium nitrate (aq)
What is the maximum amount of silver chloride that can be formed? \square grams

What is the FORMULA for the limiting reagent? \square

What amount of the excess reagent remains after the reaction is complete? \square grams

QUESTION 4.5

Upon reaction of 1.274 g of copper (II) sulfate with excess zinc metal, 0.392 g copper metal was obtained according to the equation:

$$
\mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{ZnSO}_{4}(\mathrm{aq})
$$

What is the percent yield?

GRAVIMETRIC ANALYSIS

A mixture consisting of only chromium(II) chloride ($\mathbf{C r C l}_{\mathbf{2}}$) and copper(II) chloride $\left(\mathbf{C u C l}_{\mathbf{2}}\right)$ weighs $\mathbf{1 . 0 3 0 7} \mathrm{g}$. When the mixture is dissolved in water and an excess of silver nitrate is added, all the chloride ions associated with the original mixture are precipitated as insoluble silver chloride ($\mathbf{A g C l}$). The mass of the silver chloride is found to be $\mathbf{2 . 2 9 2 4} \mathrm{g}$. Calculate the mass percentages of chromium(II) chloride and copper(II) chloride in the original mixture.

Mass percent $\mathbf{C r C l}_{\mathbf{2}}$	$=\square \%$
Mass percent $\mathbf{C u C l}_{\mathbf{2}}$	$=\square \%$

[^0]: © The McGraw-Hill Companies, Inc./Stephen Frisch Photographer

