Chem 200

All emails sent to <u>chem200@sdsu.edu</u>

Office hours held virtually through the MSLC. **Tues 9.00 am to 11.00 am**

PLEASE READ THE SYLLABUS

IMPORTANT ANNOUNCEMENTS

1. Email <u>chem200@sdsu.edu</u> ONLY unless its regarding lab or discussion which then you need to email your respective TA.

2. Follow the directions in adding OWL that Theresa provided you in Module 1.0 > Adding OWL (READ). She made a video and has a pdf file with directions.

3. There is no course key for OWL.

4. Read the announcements and emails that Theresa, Megan, or your TAs sends out.

5. Again read the syllabus. A lot of questions are being asked that are in the syllabus. For example, emailing when the lab will be and what will take place can be answered by the syllabus. In the syllabus there is a lab schedule, read, use it, and print it out.

6. And for good measure read the announcements before sending out emails. The majority (98%) of questions can be answered by: the syllabus, videos Theresa has made, and in the announcements.

UPCOMING IMPORTANT DATES

•Safety Quiz due Friday, February 3rd at 11:59 pm (in OWL Lab & Canvas), must pass with >60% to do in-person labs

How to write a lab notebook and prelab due Sunday, February 5th at 11:59 pm

Volumetric Prelab due Sunday, February 5th at 11:59 pm

•Volumetric Lab Report due Sunday, February at 11:59 pm

•Chapter 1-4 Chapter Problem Sets in OWL Lecture due Thursday, February 9th at 11:59 pm (Start Now)

 Chapter 1-4 Chapter Assessments in OWL Lecture is Thursday, February 9th at 11:59 pm (Start Now); 2 chances, no time limit

•Exam 1 starts at 3 pm Friday, February 10th and will close on Saturday, February 11th at 3pm in OWL Lecture; Chapters 1-4. You have 24hrs. Only 2 hrs once you start; be sure to give yourself a full 2 hr time slot.

SUPPLEMENTAL INSTRUCTION (SI)

- Study sessions lead by former CHEM 200/202 students that excelled in the previous semesters class.
- Occur 15+ times a week.

• Free to access, no reporting to faculty.

THE MATH AND SCIENCE LEARNING CENTER (MSLC)

Students are encouraged to make use of The Mathematics and Statistics Learning Center (MSLC) for free STEM tutoring, located in the Love Library, Room 328. For a full list of courses tutored, please visit the MSLC website: https://mlc.sdsu.edu/.

The MSLC is supported by your student success fee. We strongly encourage you to use this wonderful, free resource. Some students believe that they shouldn't need to ask for help, but research has shown that the average grade for students who attend the MLC is almost one full grade higher than those who don't seek such support.

EARLY ATOMIC THEORY THE SUB-ATOMIC PARTICLES ISOTOPES AND IONS MOLECULAR AND IONIC COMPOUNDS NOMENCLATURE

Chapter 2: Atoms, Molecules and Ions

Early Theories About Matter

The Greeks:

Can matter be divided into infinitely smaller pieces?

If not, what is the smallest unit of matter?

"Atomos"- Indivisible

Early Theories about Matter

Alchemists-

Tried to "transmute" lead into gold, among other things.

Very secretive, not sharing knowledge

Deser	← collector		
) MOONL Luna	Usultpetre	Yunigar	¥ jerrum
Sun sol	Δ fire	t mortar	the vitrial
Dearth Terra	abla water	8 salt	€ lead
Mercury Mercuridus	A air	Ö antimony	+ while lead
Q venus Venus	∇ earth	4 alcali	.J. olive oil
- mans	🗱 copper	Falumen	*ammonia
jupider	4 lead	of ansenic	⊖ salt
L saturn	€ brass	to lapis	O sulphuric
H Wranus	9 ansenic	an copper	<pre></pre>
↓ neptune	t phosphorus	D copper	7 potash
+ Neptunus		· · · · · · · · · · · · · · · · · · ·	X transmitterin

Dalton's Atomic Theory

Figure 2.4 When the elements copper (a shiny, red-brown solid, shown here as brown spheres) and oxygen (a clear and colorless gas, shown here as red spheres) react, their atoms rearrange to form a compound containing copper and oxygen (a powdery, black solid). (credit copper: modification of work by http://imagesof-elements.com/copper.php)

1. Matter consists of atoms

- 2. Atoms are the smallest unit of an element that still has the properties of that element
- 3. Elements consist of only one type of atom
- 4. Atoms of one element differ in properties from atoms of another element
- 5. A compound is made from atoms of tow or more different elements combined in small whole number ratios (Law of Constant Composition)
- During chemical reactions, atoms are not created or destroyed but rather rearranged to form different compounds (Law of Conservation of Mass)

Law of Constant Composition

All samples of a Pure Compound contain the same elements in the same proportions

Constant Composition of Isooctane

Sample	Carbon	Hydrogen	Mass Ratio
A	14.82 g	2.78 g	$\frac{14.82 \text{ g carbon}}{2.78 \text{ g hydrogen}} = \frac{5.33 \text{ g carbon}}{1.00 \text{ g hydrogen}}$
в	22.33 g	4.19 g	$\frac{22.33 \text{ g carbon}}{4.19 \text{ g hydrogen}} = \frac{5.33 \text{ g carbon}}{1.00 \text{ g hydrogen}}$
с	19.40 g	3.64 g	$\frac{19.40 \text{ g carbon}}{3.63 \text{ g hydrogen}} = \frac{5.33 \text{ g carbon}}{1.00 \text{ g hydrogen}}$

Table 2.1

J.J. Thomson

Plum-pudding model

Discovery of Electrons

Calculated the mass to charge ratio for electrons

https://youtu.be/o1z2S3ME0cl

Figure 2.6 (a) J. J. Thomson produced a visible beam in a cathode ray tube. (b) This is an early cathode ray tube, invented in 1897 by Ferdinand Braun. (c) In the cathode ray, the beam (shown in yellow) comes from the cathode and is accelerated past the anode toward a fluorescent scale at the end of the tube. Simultaneous deflections by applied

Oil Drop Experiment

Determined the magnitude of the elemental charge

Figure 2.7 Millikan's experiment measured the charge of individual oil drops. The tabulated data are examples of a few possible values.

Figure 2.9 Geiger and Rutherford fired α particles at a piece of gold foil and detected where those particles went, as shown in this schematic diagram of their experiment. Most of the particles passed straight through the foil, but a few were deflected slightly and a very small number were significantly deflected.

Figure 2.10 The α particles are deflected only when they collide with or pass close to the much heavier, positively charged gold nucleus. Because the nucleus is very small compared to the size of an atom, very few α particles are deflected. Most pass through the relatively large region occupied by electrons, which are too light to deflect the rapidly moving particles.

Gold Foil Experiment

Discovery of the Nucleus

The Subatomic Particles

		Properties of Su	ubatomic Partie	cles	
Name	Location	Charge (C)	Unit Charge	Mass (amu)	Mass (g)
electron	outside nucleus	-1.602×10^{-19}	1-	0.00055	0.00091×10^{-24}
proton	nucleus	1.602 × 10 ⁻¹⁹	1+	1.00727	1.67262×10^{-24}
neutron	nucleus	0	0	1.00866	1.67493 × 10 ⁻²⁴

Table 2.2

Isotopes

Element	Symbol	Atomic Number	Number of Protons	Number of Neutrons	Mass (amu)	% Natura Abundanc
	² ₁ H (deuterium)	1	1	1	2.0141	0.0115
	³ ₁ H (tritium)	1	1	2	3.01605	- (trace)
halium	³ ₂ He	2	2	1	3.01603	0.00013
neaum	⁴ ₂ He	2	2	2	4.0026	100
Established	51i	3	3	3	6.0151	7.59
lithum	73Li	3	3	4	7.0160	92.41
beryllium	948e	4	4	5	9.0122	100
haven	¹⁰ 5B	5	5	5	10.0129	19.9
boron	¹¹ ₅ B	5	5	6	11.0093	80.1
	¹² 6C	6	6	6	12.0000	98.89
carbon	¹³ ₆ C	6	6	7	13.0034	1.11
	¹⁴ ₆ C	6	6	8	14.0032	- (trace)
-	¹⁴ 7N	7	7	7	14.0031	99.63
nitrogen	¹⁵ 7N	7	7	8	15.0001	0.37
	¹⁶ / ₈ O	8	8	8	15.9949	99.757
oxygen	¹⁷ 80	8	8	9	16.9991	0.038
	¹⁸ / ₈ O	8	8	10	17.9992	0.205
fluorine	¹⁹ ₉ F	9	9	10	18.9984	100
	²⁰ ₁₀ Ne	10	10	10	19.9924	90.48
neon	²¹ ₁₀ Ne	10	10	11	20.9938	0.27
	22 10 Ne	10	10	12	21.9914	9.25

Table 2.4

Ions

Atomic Symbols

The periodic table

Atomic Mass vs. Atomic Weight vs. Mass Number

- Atomic Mass= The mass of a single atom
 - A single ¹²C atom has an atomic mass of exactly 12 amu (defined)
 - A single ¹³C atom has an atomic mass of 13.003355 amu (to 8 sig figs)
 - A single ¹⁶O atom has an atomic mass of 15.994914 amu (to 8 sig figs)
- Atomic Weight (Average Atomic Mass)= The average mass of the isotopes
 - Carbon has an Average Atomic Mass of 12.011 amu
 - Oxygen has an Average Atomic Mass of 15.999 amu
- Mass Number = Number of Protons + Number of Neutrons
 - ¹²C has 6 protons and 6 neutrons
 - ¹³C has 6 protons and 7 neutrons

How many protons, neutrons and electrons?

 ${}^{16}_{8}0^{-2}$

Mass Spectrometry

Calculating Average Atomic Mass

Isotopes of Silicon:	Percent Abundance:	Atomic Mass:
Silicon-28	92.23%	27.97693 amu
Silicon-29	4.68%	28.97649 amu
Silicon-30	3.09%	29.97377 amu

27.97693 amu (0.9223) + 28.97649 amu (0.0468) + 29.97377 amu (0.0309) = 28.09 amu

Finding Percent Abundance

- The average mass for lithium (Li) is 6.94 g/mol. The isotopes of lithium are ⁶Li and ⁷Li with respective masses of 6.0151 amu and 7.0160 amu.
- Given this information, what is the abundance of each of the isotopes?

Molecular Formula

Empirical Formula

Figure 2.19 (a) The white compound titanium dioxide provides effective protection from the sun. (b) A crystal of titanium dioxide, TiO₂, contains titanium and oxygen in a ratio of 1 to 2. The titanium atoms are gray and the oxygen atoms are red. (credit a: modification of work by "osseous"/Flickr)

Molecular vs. Empirical Formula

- Molecular Formula:
 - The actual number of atoms that make up each molecule
- Empirical Formula:
 - The lowest whole number ratio of atoms
 - Ionic compounds don't have molecular formulas, only empirical ones

Lecture Participation: What is the Empirical Formula of Glucose?

The Molecular formula for Glucose is $C_6H_{12}O_6$. What is its empirical formula?

Ionic and Molecular Compounds

Ionic Compounds

Figure 2.28 (a) A sodium atom (Na) has equal numbers of protons and electrons (11) and is uncharged. (b) A sodium cation (Na⁺) has lost an electron, so it has one more proton (11) than electrons (10), giving it an overall positive charge, signified by a superscripted plus sign.

Polyatomic Ions

Name	Formula	Related Acid	Formula	
hydrogen sulfate	HSO ₄ -			
sulfite	SO3 2-	sulfurous acid	H ₂ SO ₃	
hydrogen sulfite	HSO3-			
phosphate	PO4 3-	phosphoric acid	H ₃ PO ₄	
hydrogen phosphate	HPO4 2-			
dihydrogen phosphate	H ₂ PO ₄ ⁻			
perchlorate	ClO ₄ -	perchloric acid	HCIO ₄	
chlorate	CIO3-	chloric acid	HCIO ₃	
chlorite	CIO2-	chlorous acid	HCIO ₂	
hypochlorite	CIO-	hypochlorous acid	HCIO	
chromate	CrO ₄ ²⁻	chromic acid	H ₂ Cr ₂ O ₄	
dichromate	Cr ₂ O ₇ ²⁻	dichromic acid	H ₂ Cr ₂ O ₇	
permanganate	MnO ₄	permanganic acid	HMnO ₄	

Name	Formula	Related Acid	Formula	
ammonium	NH4 ⁺			
hydronium	H ₃ O ⁺			
oxide	O ²⁻			
peroxide	02 ²⁻			
hydroxide	OH			
acetate	CH ₃ COO ⁻	acetic acid	CH3COOH	
cyanide	CN-	hydrocyanic acid	HCN HN ₃	
azide	N ₃ ⁻	hydrazoic acid		
carbonate	CO3 2-	carbonic acid	H ₂ CO ₃	
bicarbonate	HCO3-			
nitrate	NO ₃ -	nitric acid	HNO ₃	
nitrite	NO ₂ -	nitrous acid	HNO ₂	
sulfate	SO4 2-	sulfiric acid	H ₂ SO ₄	

Table 2.5

Table 2.5

Chemical Nomenclature

TC

Technetium

75

Re

MO

Molybdän

Rhodium

17

Ir

Indium

109

AU

 $=H^{3}O$

 $OH^2 =$

 \bigcap 3

Pt

Ruthenium

76

OS

Osmium

108

var.

41

Covalent and Ionic Bonds

Ionic compounds

Ionic compounds are formed between a metal and a non-metal. The ionic bond is produced by the electrostatic attraction between the positive and negative ions.

				I	Meta	I	Metalloid Nonmet			tal							
Н															He		
Li	Be	Be									В	С	Ν	0	F	Ne	
Na	Mg	Иg							AI	Si	Р	S	Cl	Ar			
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	-	Xe
Cs	Ва	La-Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac-Lr															
				_		_	-	_			_		_	_			1

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Type I: The cation has a determined charge

Some cations always have the same charge.

These cations form "Type I" Ionic Compounds.

- +1 Charge: Group 1 Metals, Silver (Ag⁺), and Ammonium (NH₄⁺)
- +2 Charge: Group 2 Metals, Zinc (Zn²⁺), and Cadmium (Cd²⁺)
- +3 Charge: Aluminum (Al³⁺), and Gallium (Ga³⁺)

Name of Cation Name of Anion+ide

Examples

Mg_3N_2	Magnesium Nitride
CaF_2	Calcium Fluoride
Nal	Sodium lodide
K ₂ S	Potassium Sulfide

EXAMPLES

Potassium Chloride

Lithium Oxide

Barium Phosphide

 K^+ and $CI^- \rightarrow KCI$

 Li^+ and $O^{2-} \rightarrow Li_2O$

 Ba^{2+} and $P^{3-} \rightarrow Ba_3P_2$

Knowledge check

What is the formula for Sodium Nitride?

What is the name of MgCl₂?

Type II: The cation can form Ions with different charges

Many metals can form ions with different charges. For example, both Fe²⁺ and Fe³⁺ can form a compound with oxygen, so saying "iron oxide" is not specific. These are Type II Cations

Roman numerals are used to designate the charge of the cation. To determine the charge of the cation you must balance the known charge of the anion.

Name of Cation (Roman Numeral) Name of Anion+ide

Examples:

 $FeO \rightarrow Iron (II) Oxide$

Since oxygen is always O²⁻, the iron must be Fe²⁺ to balance the charge

 $Fe_2O_3 \rightarrow \frac{Iron(III)Oxide}{Iron(III)Oxide}$

Since oxygen is always O^{2-} there is a total negative charge of -6. The iron ions must have a total charge of +6. Since there are two of them, the iron must be Fe^{3+} to balance the charge.

$$PbCl_2 \rightarrow Lead$$
 (II) Chloride

Since chloride is always Cl⁻, there is a total negative charge of -2. Since there is only one for them, the Lead must be Pb²⁺ to balance the charge.

 $PbCl_4 \rightarrow Lead (IV) Chloride$

Since chloride is always Cl⁻, there is a total negative charge of -4. Since there is only one for them, the Lead must be Pb⁴⁺ to balance the charge.

+1									0
1 H Hydrogen	+2				+3	-3	-2	-1	2 He
3 Li	4 Be Beryllian	Trends for				7 N Narogan	8 O Ovygen	9 F Paorine	10 Ne _{Nem}
11 Na Sodare	12 Mg	Ionic Charge		+2	13 Al	15 P Phosphores	16 S 5atter	17 Cl	18 Ar Argon
19 K	20 Ca Calcum		+1	30 Zn _{Zas}	31 Ga Gatham		34 Se	35 Br	36 Kr _{Krypun}
37 Rb	38 Sr Streetine		47 Ag	48 Cd Cadman				53 I Ister	54 Xe _{Nemon}
55 Cs Cestuar	56 Ba								86 Rn Radon
87 Fr	88 Ra Ratium								

Knowledge Check

What is the formula for Copper (II) Oxide?

What is the name of Pb_3N_4 ?

Ionic compounds with polyatomic Ions

Both Type I and Type II cations can form Ionic compounds with polyatomic ions.

Common Polyatomic Ions							
Nitrite	NO ₂ -						
Nitrate	NO ₃ -						
Sulfite	SO32-						
Sulfate	SO42-						
Phosphite	PO_3 ³⁻						
Phosphate	PO ₄ ³⁻						
Carbonate	CO35-						
Hydroxide	OH-						

Hypochlorite	CIO-	
Chlorite	CIO2-	
Chlorate	CIO3-	
Perchlorate	CIO ₄ -	
Permanganate	MnO ₄ -	
Acetate	C2H3O2-	
Hydrogen carbonate	HCO ₃ -	
Ammonium	n NH4*	
lodate	10 ₃ -	

Ionic compounds with polyatomic Ions

The names of the polyatomic ions do not change when they are part of a compound. You must know the correct charge of the polyatomic ion in order to balance the charge of the cation. Paratheses are used to indicate multiple polyatomic ions.

Name of Cation Name of Anion

Examples:

Ammonium Phosphate $NH_4^+ + PO_4^{3-} \rightarrow (NH_4)_3 PO_4$ Calcium Hypochlorite $Ca^{2+.} + ClO^- \rightarrow Ca(ClO)_2$ Magnesium Phosphite $Mg^{2+} + PO_3^{3-} \rightarrow Mg_3(PO_3)_2$ Chromium (III) Sulfate $Cr^{3+} + SO_3^{2-} \rightarrow Cr_2(SO_3)_3$

		Common Polyator	nic Ions
Knowledge Check		Nitrite	NO2-
mownedge eneck		Nitrate	NO ₃ -
		Sulfite	SO3 2-
		Sulfate	SO4 2-
	Phosphite	PO33-	
		Phosphate	PO4 3-
What is the formula for Potassium Sulfite?		Carbonate	CO32-
		Hydroxide	OH-
		Hypochlorite	CIO-
What is the name of $Zn_2(PO_4)_2$?		Chlorite	CIO2-
		Chlorate	CIO3-
		Perchlorate	CIO ₄ -
		Permanganate	MnO ₄ -
		Acetate	C2H3O2-
		Hydrogen carbonate	HCO3-
		Ammonium	NH_4^+
	K ₂ SO _{3,} Zinc Phosphate	lodate	10 ₃ -

Ionic compounds containing one or more acidic proton (The cation is H⁺)

There are two types of acids we will discuss: *Binary Acids-* formed between Hydrogen and a single Element

Oxyacids- formed between Hydrogen and an oxygen containing polyatomic ion

Binary acids

Hydro Name of Anion-ic Acid

HCI	Hydrochloric Acid
HBr	Hydrobromic Acid
H_2S	Hydrosulfuric Acid

Note: it is not incorrect to say "hydrogen chloride", "hydrogen bromide", etc.

Oxyacids

"-ate goes to -ic, -ite goes to -ous"

Name of Anion-ic Acid

Name of Anion-ous Acid

- H₃PO₄ Phosphoric Acid
- H₃PO₃ Phosphorous Acid
- HNO₂ Nitrous Acid
- HNO₃ Nitric Acid
- HCIO Hypochlorous Acid
- HClO₃ Chloric Acid

<u>Remember</u>: Hydrogen is the cation in these compounds. You determine the number of hydrogen by balancing the charge of the anion.

Knowledge Check

What is the formula for perchloric acid?

What is the name of H_2SO_3 ?

Covalent compounds

Covalent compounds are held together by covalent bonds. The charges do not balance the way they do in ionic compounds.

NO, N_2O , N_2O_2 , and NO_2 are all examples of covalent compounds between nitrogen and oxygen so saying "Nitrogen Oxide" is not specific.

Numerical prefixes for covalent	Number	Prefix
compounds	1	mono-
	2	di-
Numerical prefixes are added to the names of covalent	3	tri-
compounds to indicate the number of atoms present	4	tetra-
The prefix "mono-" is not used for the first atom named in a compound.	5	penta-
	6	hexa-
NO Nitrogen Monoxide	7	hepta-
N ₂ O Dinitrogen Monoxide	8	octa-
N ₂ O ₂ Dinitrogen Dioxide	9	nona-
NO ₂ Nitrogen Dioxide	10	deca-

More examples of covalent compounds

PCl₄ Phosphorous Tetrachloride

Carbon Monoxide

CO₂ P₄O₁₀

СО

Carbon Dioxide

Tetraphosphorous decaoxide

Knowledge check

What is the formula for Disulfur Trioxide?

What is the name of N_2O_5 ?